PARSA ESMATI

RESEARCHER

QUK

https://parsaesmati.github.io/

a parsa.esmati@bristol.ac.uk

github.com/ParsaEsmati

RESEARCH EXPERIENCE

Probabilistic models, and spatio-temporal generative modelling with interests in vision and AI4Science

Ongoing

SEA: State-Exchange Attention for High-Fidelity Physics-Based

Mar 2024- May 2024

Transformers NeurIPS 24

- A first step towards physics aware models with information exchange mechanisms amongst physical states. Setting the foundations for physical models to understand the governing equation from data.
- Introduction of a ViT-like autoencoder for unstructured meshed data in 2D and 3D space
- Optimization of LLAMA 3 architecture for autoregressive temporal generation. Full code written with pytorch and open sourced on github.

Authors: Parsa Esmati, Amirhossein Dadashzadeh, Vahid Goodarzi, Nicolas Larrosa, Nicolo Grilli

Co-STAR: Collaborative Curriculum Self-Training with Adaptive Regularization for Source-Free Video Domain Adaptation ICCV 25

Jul 2024 - Nov 2024

(Under review)

- Unsupervised video domain adaptation for classification task (Detail will be disclosed upon request).
- Adoption of vision language models such as CLIP for domain adaptation.

Authors: Amirhossein Dadashzadeh, Parsa Esmati, Majid Mirmehdi

Simulating chemical mixing and molten pool shape in dissimilar welds using thermal fluid dynamics IJHMT

Nov 2023- Jan 2024

- Development of a computational framework to simulate fluid flow, mixing of liquids, heat transfer via ray tracing etc.
- Rigour validation of the framework on manufacturing processes in nuclear industry
- Solver package written in C++ and open sourced on github

Authors: Parsa Esmati, Thomas Flint, Fatma Akyel, Simon Olschok, Uwe Reisgen, Philip Cardiff, Nicolas Larrosa, Nicolo Grilli

Version 2.0LaserbeamFoam: Laser ray-tracing and thermally induced state Nov 2023- Dec 2024 transition simulation toolkit SoftwareX

 Addition of a multiphase interaction capabilities to a computational framework designed for manufacturing in nuclear industry and advance materials.

Authors: Thomas Flint, Joseph Robson, Parsa Esmati, Nicolo Grilli, Gowthaman Parivendhan, Philip Cardiff

EDUCATION AND WORK

Research intern at Microsoft Research

Incoming

Microsoft

Game Intelligence Group

Bachelor and Masters degree in Engineering

2018 - Sep 2022

University of Bristol
School of Electrical, Electronics and Mechanical Engineering

PhD in Engineering (STEM)

Sep 2022 - Ongoing

University of Bristol School of Electrical, Electronics and Mechanical Engineering

TEACHING EXPERIENCE

- Engineering sciences (EEME University of Bristol)
- Python Programming (EEME University of Bristol)
- C++ Programming
- Fluid Mechanics and Heat Transfer (EEME University of Bristol)
- Aerospace Vehicle Design and System Integration (CAME University of Bristol)

SKILLS

Programming

Python (Proficient), C++ (Expert), C (Expert), Matlab (Expert), Java (Intermediate)

ML Packages and Tools

Pytorch (Proficient), NumPy (Proficient), Tensorflow (Comfortable), Keras (Basic), Jax (Basic)

Engineering and design Packages

Fusion360 (Proficient), Inventor (Proficient), SOLIDWORKS (Comfortable), Gmsh (Comfortable), OpenFOAM (Proficient), MOOSE (Basic), Blender (Basic)

FURTHER INFORMATION

Research interest (Keywords)

- · Generative models
- Tokenizers and compression
- Spatio-temporal Diffusion models
- · Unstructured data
- · Video understanding